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We develop a parsimonious model in which frictions in the labor market may turn small,
continuous labor productivity declines into large drops in employment, endogenously
causing disasters. Assuming one state variable and CRRA agents, we solve for prices in
closed form, calibrate the model using labor market data, and show that this simple setting
captures the high, countercyclical volatility and equity premium observed in the United
States. Moreover, returns in our model are conditionally predicted by dividend yields.
Finally, as in the data, in our setting the disasters are larger when the capital’s share of
income is higher. (JEL G12)

Asset pricing models with rare catastrophic events may produce a high equity
premium (Rietz 1988; Barro 2006), offering an explanation for the equity
premium puzzle (Mehra and Prescott 1985).These models may also be extended
to produce high volatility (Wachter 2013), thereby providing a resolution to the
volatility puzzle (Shiller 1981; Le Roy and Porter 1981; Keim and Stambaugh
1986; Campbell and Shiller 1988; Hodrick 1992). However, in these studies
the cause of the disasters is unspecified, making it difficult to assess the validity
of the model other than by observing that it calibrates reasonably (Mehra and
Prescott 1988).1

The model developed in this paper contributes to the aforementioned
catastrophic risk literature. First and foremost, in contrast with previous
research, the disasters in our model are endogenous. More precisely, these
disasters are generated by labor dynamics, and, as such, the model may elucidate
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1 Some of the models incorporating disasters are also referred to as “peso models.” The reason lies in the collapse
of the Mexican peso in 1994. The high peso premium observed prior to the collapse was explained by the small
probability of a huge out-of-sample devaluation, which was eventually observed (see Danthine and Donaldson
1999). Other models allow for disasters of magnitudes not yet observed in the data. Modeling large but never
observed catastrophes led Mehra and Prescott (1988) to criticize the early disaster models as ad hoc.
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how asset prices and employment are related. Within this setting, agents respond
to economic conditions, suggesting that a disaster is near by increasing the
volatility of the risky asset and driving up its expected returns. These responses
also create conditional patterns in prices, which, as Veronesi (2004) argued, can
be tested even if disasters are not observed in the data. Within the context of this
parsimonious model, we address the puzzles enumerated above, using a setting
in which agents have CRRA utility with reasonable levels of risk aversion.

Our economic setting shares a number of features with Diamond (1982),
whose study links the labor market with the output market. The model we study
additionally incorporates stock markets and calculates the corresponding asset
prices. Our simple economy has two sectors. In the first of these sectors, capital
(which is the focus of asset pricing) and labor meet, and the consumption good
is generated. The production technology in this sector is of Cobb-Douglas type,
but as in Diamond (1982), it is also directly proportional to total employment
in this sector. This latter feature alludes to an economy producing specialized,
nonhomogenous goods that must be first traded with other employed laborers
before they are consumed.2 Having such an externality in the production
function links this sector’s output to the labor markets: the output will be higher
when labor is committed to this sector rather than being employed somewhere
else. We further assume that the production technology is directly proportional
to an exogenous productivity variable, which in our model is continuous and
does not exhibit any jumps. If and when labor decides to leave the first economic
sector, it can move to a second economic sector, which is less capital intensive
than the first. For tractability, we assume that the production technology in the
second sector requires only labor and that it generates some alternative wage
(expressed in units of the consumption good) per unit of labor. For simplicity,
and consistent with observations on wages’ downward rigidity, we assume
this alternative wage to be deterministic, increasing at a constant rate. Finally,
laborers and capital owners are price takers and act to maximize their CRRA
utility.

As observed by Diamond (1982), this specification produces a fragile
economic setting. To see why, suppose that productivity decreases substantially.
As this will lower the output, the wages paid to laborers in the capital-intensive
sector will decline. If this decline causes wages to drop beyond the alternative
wage, the marginal laborer might decide to leave the capital-intensive sector and
work for the alternative wage instead. Because output in the capital-intensive
sector depends on total employment, this, in turn, will depress wages even more
and trigger a further decrease in employment in the capital-intensive sector. This
cascading mechanism will unfold throughout our economy, triggering a drop

2 For example, in Diamond (1982), laborers on a tropical island produce only coconuts, and a taboo prevents them
from consuming their own pick. To consume, Diamond’s laborers need to find a trade partner (while incurring
a search cost), and exchange coconuts (at a coconut-for-coconut rate). In this way, while the model has one
consumption good, it exhibits similarities to an economy with a variety of goods in which producers need to sell
a portion of their output, being unable to consume it all.
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in rents on capital, and a drop in overall consumption that intuitively is equal
to the capital’s share of income. This is the disaster in the sense understood
by the Rietz-Barro-like literature. In contrast with previous research, however,
this negative jump in consumption occurs endogenously via a well-specified
mechanism, whereas our state variable does not have any jumps. To further
strengthen the endogenous aspect of the economic disasters in our economy and
prevent “sunspots,” or self-fulfilling cataclysmic events (Cass and Shell 1983;
Azariadis 1981), we assume away the possibility that workers may arbitrarily
shift into the less capital-intensive sector.

The dynamics of our model are consistent with several stylized facts of
financial crises and their recovery. The model includes the vicious feedback
cycle of depressions and other financial crises, in which unemployment begets
unemployment: as firms downsize in response to a slowdown in the economy,
the workers who become unemployed can afford less, depressing aggregate
demand and causing a further slowdown. The model also mirrors the virtuous
employment cycle of economic recovery, in which newly hired workers can
spend more, pushing up aggregate demand and strengthening recovery and
growth. Furthermore, the model also captures the fact that economies are more
unstable in bad times. This lack of stability can manifest in multiple ways,
ranging from effects as simple as unprecedented policy responses (which,
without history as a guide, are obviously risky), to complex changes such as
shifts in government, antidemocratic measures, military coups, social uprisings,
or revolutions. While our model, being parsimonious, has only one (extreme)
bad state, when calibrating we apply the less extreme interpretation of a disaster
and a correspondingly milder drop in consumption. However, our model is
by no means intended to capture all of the full and true dynamics of crises
and recoveries. For example, we abstract away from money and credit, from
monetary and fiscal policy (and policy mistakes), and from heterogeneity or
time delays in labor, capital, and the consumption good. Instead, we propose
a parsimonious model, which allows us to solve atemporal and temporal
equilibria with rational agents in a tractable way; this in turn allows us to
price long-lived assets in the economy and address a variety of asset pricing
puzzles.

In the setting outlined above, the state variable—the productivity—affects
asset prices through three concurrent mechanisms. The first mechanism is as
in Lucas (1978): a reduction in output reduces prices because the level of
expected cash flows is lower. The second mechanism is that lower productivity
means that a disaster is more imminent, and hence the duration at which
dividends are received is shorter.3 The third mechanism stems from the fact
that through a risk aversion effect, when a disaster is closer, the pricing kernel

3 This is similar to having probabilities of disaster that are perfectly negatively correlated with consumption, as
in Gourio (2008a) or Wachter (2013). In contrast with their work, the probability of disaster in our model is
endogenous.
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of the model becomes lower. A decline in productivity induces a simultaneous
decline in dividends, in the duration that these dividends are being paid, and
also in the pricing kernel, thereby not only decreasing prices but doing so
substantially. Because a small change in dividends may result, through the
coordination of these three mechanisms, in a big change in prices, our model can
accommodate a small volatility of dividends with a high volatility of prices, thus
addressing the volatility puzzle. Additionally, consumption and equity prices
are correlated, and, in turn, because of the high volatility of prices relative
to their fundamentals, the equity premium will be high. Finally, our analysis
shows that the sensitivity of prices to dividends is stronger when the economy
is weaker, leading to countercyclical volatility and equity premium.

We calibrate the model by following Barro (2006) and Mehra and Prescott
(1985), assuming an annual volatility of consumption of 3.57% and a relative
risk aversion under 10. With these parameters we are able to provide a full
resolution to both the excess volatility puzzle and the equity premium puzzle. In
addition, given the fact that our disaster-inducing mechanism is fully specified,
we are able to check the validity of our model independently of asset pricing. For
example, our model produces the simple implication that more capital-intensive
economies experience larger disasters. We use cross-sectional country data
reported in Gollin (2002) for labor’s share of income, and disaster magnitudes
from Barro and Ursua (2008) to check this prediction and find support for it. In
our model, the drop in consumption when a disaster occurs is determined only
by the capital’s share of income, and for U.S. data, in particular, we predict
this drop to be 36%. This is similar to the calibrations used in Barro (2006).
Moreover, in our calibration the duration of disasters, as well as the growth
from the trough, appear consistent with those reported, for example, by Gourio
(2008b).

As inVeronesi (2004), by using conditional moments of returns, we are able to
test our model regardless of whether an actual disaster has been observed in the
data. We test whether conditional volatility and returns follow our predictions
and find strong support for our model. Specifically, as observed in the data,
volatility in our model is countercyclical. Furthermore, the expected excess
returns depend on dividend yields in a simple way, and this dependence offers
a theoretical justification for why returns should be predicted by dividend
yields. In fact, in some cases, the dividend yield implied by our model
completely subsumes the predictive power of the observed dividend yield
and of another traditional predictor, namely, the cay variable of Lettau and
Ludvigson (2001). With certain calibrations, our model suggests a theory of
why the power of predictive regressions is countercyclical, as documented by
Henkel, Martin, and Nardari (2011). Predictability of returns in our model does
not make the agents irrational, as it is driven by predictable changes in expected
returns.

The paper is organized as follows: Section 1 presents the model of the
economy and solves for dividends, consumption, and asset price levels.
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Section 2 discusses the testable predictions generated from our model. Section 3
calibrates the model and tests it, and Section 4 offers our conclusions.

1. The Model

In this section we introduce our model, which is that of a two-sector, dynamic
production economy. This setting is a simplified version of Matsuyama (1991),
which is in turn inspired by Diamond (1982). We start by presenting our model’s
assumptions.

1.1 The real economy
There is a single perishable consumption good, which also serves as the
numeraire.

There is an infinite number of households in the economy, indexed by j ∈J ,
all infinitely lived. Households are endowed with a flow of labor services,
according to a measure LE

t , defined on J with a total mass of one. Households
are also endowed with a capital asset K with a total mass of one. In our model,
K cannot be accumulated and does not depreciate. There are other securities
besides the capital asset (e.g., bonds) that are assumed to be in zero supply.

There are two sectors in the economy. In one sector, there is an infinite
number of firms, indexed by i ∈I. Firms rent labor services and the use of
capital and produce the consumption good. Firms do not own any assets and do
not trade in financial assets. Firms can only rent labor services and capital at the
prevailing spot prices and sell their output at the spot price of the consumption
good (which is also the numeraire). In this first sector of the economy, each
firm i uses the same production technology at time t . The production function
is modeled to have a Cobb-Douglas form, with an externality originating in
Diamond (1982). As outlined in Diamond (2011), the particular functional
form employed in the production function allows for an interaction between the
labor market and the output market. To create such an interaction, the standard
Cobb-Douglas production function is multiplied by a function of labor. Because
the employment rate is procyclical,4 the simplest such function is an affine,
nondecreasing one. With these considerations, for each firm i, this production
function is given by

Ft (Lit ,Kit )=θt L̄tL
1−a
it Ka

it (1)

L̄t =
∑
i∈I

Lit ,

where Lit and Kit , respectively, are the amounts of labor and capital supplied
to firm i at time t . The production function of each firm is directly proportional

4 See, for example, Barro’s (2007) Figure 9.7.
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to the amount of labor L̄t supplied in aggregate to the first sector. Intuitively,
when less labor is supplied in aggregate, the trading costs each firm incurs to
sell its output are higher, and therefore the usable output generated by each firm
is lower.5 The capital’s share of income is a. An economy in which the services
sector is preponderant would serve as a good example for understanding the
externality in this production function. In such an economy, demand for the
production good is naturally lower when unemployment is higher, and in
equilibrium production adjusts accordingly.

The variable θ , the sole state variable of our model, is a continuous, positive
diffusion. Modeling choices for θt will be detailed in Section 1.6.

We further assume that laborers have the choice to work instead in a second
economic sector generating an alternative wage Zt >0. In practice, because the
labor’s share of income is countercyclical,6 in bad times (which in our model are
the times when productivity, and therefore output, is lower) the sectors to which
the labor migrates are less capital intensive. For simplicity, we shall assume that
the alternative to the capital intensive sector is one in which the capital share of
income is zero; in other words, we assume that the less capital-intensive sector
has a production function of the form:

Ft (L)=ZtL. (2)

We emphasize that both technologies produce the same type of consumption
good, in particular, the goods generated through the less capital-intensive
technology are part of the overall consumption.

The interpretation of the alternative production sector deserves some
discussion. One may contrast it with the first sector, which is highly specialized
and very efficient. The economy in the first sector has thousands of specialized
factories, each employing unique, sophisticated machinery and labor skills.
The efficiency of the overall economy depends on the ability to get thousands
of different products to the consumer with as little friction as possible.7

5 The steps to arrive at this functional form of the production functions are as follows. First, we start with a simple
Cobb-Douglas production function, F 1

t (Lit ,Kit )=L1−a
it

Ka
it

. This is the gross output of the firm. However, as
in Diamond (1982), each firm needs to find a trade partner (other firms) to whom it can sell its output. This is
possible to the extent that other firms are operating. We assume that this search cost is a fraction of the output of
the firm that is proportional with total employment in firms. We assume that the search cost is a fraction (1−L̄t )

of the gross output. This results in a net output equal to F 2
t (Lit ,Kit )= L̄t L

1−a
it

Ka
it

. To this we add an exogenous
productivity factor θt (modeling the fact that sometimes the coconut trees make more coconuts for the same
amount of labor and capital invested in the tree) and thus obtain the production function of Equation (1).

6 For example, Gomme and Greenwood (1995) cite this as a stylized fact about the labor’s share of income. They
report a correlation of −0.37 between labor’s share of income and GNP (both detrended using a Hodrick-Prescott
filter).

7 Diamond (2011) states that “[…] production contributes to demand […] when others are producing little, the
ability to sell is low, and so the incentive to produce is low. When others are producing much, the incentive
to produce is high.” Furthermore, analyzing the same relationship between employment and output, in a Wall
Street Journal interview (on August 12, 2011), economist Nouriel Robini alluded to such an externality, arguing
that the less companies hire, the less money flows into the hands of workers, and therefore the less companies
sell, and the more they are forced to lay off workers. Additionally, Roubini states that in an attempt to increase
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The alternative production sector would still have a diversified output, but it
would function less efficiently, reminiscent of how the economy worked before
the highly specialized, capital-intensive sector existed. Trade and search are
more localized. Crises might be localized, but there is less contagion, and the
overall economy is more robust.

A second way to interpret the alternative production sector is as conventional
unemployment, or being out of the labor force. The alternative wage, which
could be thought of as a reservation wage in this interpretation, could come
from unemployment benefits, from adding value at home, or other valuable,
but nonpaying, activities. It also can be partly irrational. For example, with
the wage rigidity phenomenon (Kramarz 2001; Dickens et al. 2007), in
which lower-paying jobs are not filled even when better alternatives are
lacking.8

Next, we will describe the agents’ preferences.

1.2 Preferences
The agents in this economy have time-separable utilities and are not satiated.
The utility of the representative agent j from a consumption stream C =(Ct )t≥0

is given by:

U (C)=E

[∫ ∞

0
e−δtu(Ct )dt

]
, (3)

where δ is a discount rate. In the analysis of the real side of the economy, all
we require is that u(·) is a strictly increasing function. We shall use constant
relative risk aversion preferences, that is, u(C)= (1−γ )−1C1−γ with γ >1.

We continue by describing the households’and firms’optimization problems.

1.3 Households’ optimization problem
Each household j is endowed at time t with an amount of labor LE

j t of which
it decides to supply LS

j t to the first sector by working for firms. The remainder
LE

j t −LS
j t works in the sector that pays the alternative wage. Each household

may supply capital and may hold the securities s ∈Sj , in proportion of πjst

(one of these securities may be the capital asset K), and Sj is a subset of S, the
set of all securities.

productivity, companies might lay off labor, also causing less money to flow into the hands of workers, thereby
decreasing output and forcing even more unemployment. Although we do not model this particular feedback
cycle, doing so has the potential to make disasters more frequent and would result in a higher equity premium
and volatility.

8 Note that our interpretation and calibration of the less capital-intensive sector is not one of a primitive economy,
although the model itself could be interpreted that way. To calibrate to an extreme disaster state, we would have
to assume that the second economic sector uses solely raw labor in the production function and that its output
is drastically lower than in our calibration. This would result in much more severe disasters than our current
calibration implies and would be beyond the scope of this study.
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The total flow of income that household j receives at time t is the sum of
wages paid by capital-intensive firms, the output of labor assigned to the less
capital-intensive sector, and the dividends paid by the securities it holds:

DLtL
S
j t +Zt

(
LE

j t −LS
j t

)
+
∑
s∈Sj

Dstπjst . (4)

This income is used for consumption at a rate Cjt or to finance rebalancing of
the household’s portfolio. Therefore, at each time t the budget constraint faced
by a household is

Cjtdt +
∑
s∈Sj

Pstdπjst ≤
⎡
⎣DLtL

S
j t +Zt

(
LE

j t −LS
j t

)
+
∑
s∈Sj

Dstπjst

⎤
⎦dt. (5)

Households are price takers. In that respect, a household observes the current
wage DLt and the prices Pst , as well as the dividends generated by ownership in
the capital asset DKt , and maximizes its utility from consumption, as defined
in Equation (3), by selecting the amount of labor supplied to the firms LS

j t

and by deciding which securities (including the capital asset K) to hold in its
portfolio. As the utility u is increasing, the household must first maximize the
upper bound on consumption, which it controls, for example, through the labor
supply LS

j t . The following proposition describes the optimal amount of labor
supplied by a household.

Lemma 1. The optimal decision of the representative household may be
described as follows. At any time t :

(1) When DLt >Zt , each household prefers to rent out all its labor
endowment to the first sector (i.e., resulting in L̄t =1 in the entire
economy).

(2) When DLt <Zt , each household uses all of its labor endowment in the
technology paying the alternative wage (i.e., Ljt =0 for all j ).

(3) When DLt =Zt , a household may rent out any amount of labor LS
j t ∈[

0,LE
j t

]
to the first sector and use the remainder LE

j t −LS
j t to generate

the alternative wage (i.e., any L̄t ∈ [0,1] may result as a solution to the
households’ optimization problem).

We now turn to describing the firms’ optimization problem.

1.4 Firms’ optimization problem
Any firm’s objective is to maximize profits from production at each point in
time. The firm takes as exogenous the level of rents it has to pay the production
factors (capital and labor) and chooses its levels of demand for labor LD, and,
respectively capital KD that maximize its output:

(LD
it ,K

D
it )= argmax

Lit ,Kit

Ft (Lit ,Kit )−KitDKt −LitDLt . (6)
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The firm decides on LD
it and KD

it at time t . At the time the decision is
made, DKt , DLt , and θt are observable. The firm also has an expectation of
the aggregate labor supplied to the first economic sector, which we denote
by L̄e

it .
The firm’s first-order conditions are derived from Equations (1) and (6):

LD
it

KD
it

=

(
(1−a)

θt L̄
e
it

DLt

)1/a

(7)

DKt =aθt L̄
e
it

(
LD

it

KD
it

)1−a

. (8)

Note that our technology exhibits constant returns to scale. Consequently,
wages and dividends paid to capital are driven up until the firms’ profit is zero.
This makes the firm ownership structure irrelevant.

1.5 Equilibrium
A rational expectations equilibrium comprises security prices Pst , s ∈S, wages
DLt , dividends paid to the capital asset DKt , and expected labor level dedicated
to the first sector L̄e

it , such that at any time t :

(A) Demand and supply of labor in the first sector are equal:∑
i∈I

LD
it =

∑
j∈J

LS
j t for all t.

(B) The expected aggregate labor dedicated to the first sector is realized:

L̄t = L̄e
it for all i,t.

(C) Demand and supply of capital are equal, provided some capital is needed
in the first sector (recall that no capital is required for the second
economic sector):∑

i∈I
KD

it =1 for all t for which
∑
i∈I

KD
it >0.

(D) The security market clears:∑
j∈J

πjKt =1 for all t

∑
j∈J

πjst =0 for all t,and for all s �=K.

With only the conditions (A)–(D), Matsuyama (1991) shows that
multiple equilibria may exist. To avoid multiple equilibria when this
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case is possible, we are making an assumption designed to pin down the
equilibrium:

(E) When there exist multiple solutions (Pst ,DLt ,DKt ,L̄t ) satisfying
(A)–(D), a “social planner” selects the Pareto-optimal solution, that is,
that equilibrium for which total consumption9 is maximized:

(Pst ,DLt ,DKt ,L̄t )=argmax
{
L̄tDLt +(1−L̄e

t )Z+DKt

}
for each t.

We proceed to characterizing the equilibrium in two stages. The first stage
characterizes the rents DLt and DKt , and an aggregate expected labor level
dedicated to the first sector L̄e

it , so that conditions (A)–(D) are met. As we
shall show, conditions (A)–(D) yield multiple static equilibria, and (E) offers a
mechanism to select among them in a way that makes the dynamic equilibrium
unique. The second stage characterizes security prices such that the security
market clears.

We start by first exploring the possible static equilibria, that is, those triplets
(DLt ,DKt ,L̄

e
it ) satisfying conditions (A)–(D).

First, because the firms might scale the production arbitrarily, we may assume
that they do so as long as there is capital to be raised to enable production.
Because the total mass of available capital is one, condition (C), which states
that the market for K should clear, is always met. Furthermore, condition (D)
will be useful when we calculate security prices, but because securities do not
influence the real economy in our model, we may assume that condition (D)
is met. Thus, to characterize those equilibria for which conditions (A)–(D) are
met, it is enough to focus on (A) and (B) only.

Using Lemma 1, we can now characterize the set of equilibria satisfying
conditions (A)–(D). The following result is proved in the Appendix:

Lemma 2. At any time t the following three static equilibria satisfy conditions
(A)–(D) above:

(1) An equilibrium in which all labor is working in the sector generating the
alternative wage (and none in the first sector, i.e., L̄t =0) always exists.
In this equilibrium DKt =0 and 0<DLt =Zt .

(2) An equilibrium in which all labor is dedicated to the first sector (and
none to the sector generating the alternative wage, i.e., L̄t =1) exists if
and only if θt ≥ (1−a)−1Zt . In this equilibrium, DKt =aθt and DLt =
(1−a)θt .

(3) A mixed equilibrium in which some but not all labor is dedicated to the
first sector (i.e., 0<L̄t <1) exists if and only if θt > (1−a)−1Zt . In this
equilibrium, DKt =aθt and DLt =Zt .

9 Total consumption C(t) is equal to the sum of dividends paid to the capital asset and wages. Wages are paid by
the capital-intensive firms (in proportion of L̄t ) and by the less capital-intensive sector (in proportion of 1−L̄t ).
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It is useful to compare the existence of multiple static equilibria satisfying
conditions (A)–(D) with the case of the unique equilibrium encountered in a
single sector production economy. In the classical production economy with one
productive sector (i.e., no alternative wage) and without any labor externalities,
workers are employed in the productive sector, and total output θt gets divided
proportionally between labor and capital. That is, in this baseline case, we have:

Dbaseline
Kt =aθt (9)

Dbaseline
Lt =(1−a)θt , ∀t.

After characterizing those equilibria satisfying conditions (A)–(D), we can now
turn to finding those that additionally satisfy (E). To do so, we first observe that
at any time t for which θt < (1−a)−1Zt , only the equilibrium in which all labor
is employed in the second, less capital-intensive production is feasible, and
thus this is also the Pareto-dominating equilibrium. For those times t when θt ≥
(1−a)−1Zt , however, all three equilibria described in Lemma 2 are feasible.
Criterion (E) selects that particular equilibrium in which the rents paid out to
labor and capital combined are maximized. The smallest total rent is paid out in
the equilibrium in which all labor works in the less capital-intensive production
technology; this total rent is equal to Zt . The next smallest rent is paid out when
the partial equilibrium is played; in this case, labor and capital combined receive
L̄taθt +(1−L̄t )Zt . Because in this case L̄t <1 (that is, not all labor works in
the first sector) and θt ≥ (1−a)−1Zt (a condition for the partial equilibrium to
exist), we observe that the total rent paid in the partial equilibrium is smaller
than θt . However, θt is the total rent paid out in the equilibrium in which all
labor is dedicated to the first sector. Thus, when θt ≥ (1−a)−1Zt , the Pareto-
dominating equilibrium is the equilibrium in which all laborers are employed
in the first sector. We can thus completely characterize the equilibria satisfying
(A)–(E) as follows. As long as θt ≥ (1−a)−1Zt , all labor is employed in the first
sector. The rent on capital is DKt =aθt , and the rent on labor is DLt =(1−a)θt .
When θt ≤ (1−a)−1Zt , all labor is employed in the no-capital sector. The rent
on capital is DKt =0, and the rent on labor is the alternative wage, DLt =Zt .
Therefore, the nature of the equilibrium is described by the position of the state
variable θ relative to the barrier (1−a)−1Zt .

Note, however, that the assumption of a social planner forcing the economy
into the Pareto-optimal equilibrium might be too optimistic relative to what
occurs in practice. For example, Murphy, Shleifer, and Vishny (1989) argued
that an economy in a state of collapse does not recover as soon as this is feasible,
but that it needs a “big push” to revert to the nondisaster state. In our model, this
would imply that the economy, once collapsed, has to wait until θt climbs to a
value strictly higher than (1−a)−1Zt before it exits the crisis state. Accepting
that a collapsed economy needs a big push to recover leads to longer crisis
durations, and such a model would in turn exhibit higher volatility and higher
equity premia than does our model. Formally, a big push equilibrium is obtained
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when assumption (E) is replaced with:

(E’) An economy in which all labor is employed in the productive sector
always selects the Pareto optimal equilibrium when multiple static
equilibria are feasible. An economy in which labor works in the less
capital-intensive sector must remain in that state as long as θt <θ

g
t ,

where θ
g
t is a positive threshold such that θ

g
t > (1−a)Zt . As soon as

θt ≥θ
g
t , the economy selects the Pareto-optimal equilibrium.

Having detailed our equilibrium,10 we turn to modeling choices for the
productivity θ .

1.6 Productivity models and dynamic equilibrium
The variables determining the dynamics of our model are the productivity θt

and the reservation wage Zt . We model Z deterministically as

Zt =Zeμt , (10)

where the rate of growth is μ>0. We model the productivity as an exponential
function of a mean-reverting stochastic process, that is,

θt =θ0t e
Xt , (11)

dXt =k(X−Xt )dt +σdWt .

Above, θ0t is a deterministic normalizing factor defined as:11

θ0t =(1−a)−1Zt . (12)

With this specification, when k>0, the productivity growth has a fixed standard
deviation and a drift that mean reverts around a fixed value,12 and Doob (1942)
ensures that asset pricing quantities of interest, as functions of a stationary
random variable, are also stationary. When the speed of mean reversion is k =0,
productivity is a lognormal Brownian motion with drift, similar to Nelson and
Plosser (1982).As we shall show later, lognormal productivity results in normal

10 We note that the model could be expanded to have partial unemployment as a possible equilibrium. This would
be the case if different laborers had different alternative wages. As productivity drops, the wages could drop
below the alternative wages for the first group (the group with the highest reservation wages). This would cause
this group of workers to shift to the alternative production sector. The search cost will then go up, causing a
further decline in aggregate output of the first sector. Wages will in turn drop (although labor share of output
will rise). If these lower wages are higher than the alternative wages of the second group, the spiraling will stop,
and we will have a partial unemployment. If these lower wages are below the alternative wages of the second
group, the downward spiral will continue. For the spiraling to stop, the difference in the reservation wages needs
to be relatively large, and/or the first group should be relatively small. As our intent is not to capture the political
science aspects of economic and financial crises, and by no means do we try to explain unemployment, we keep
the setting relatively simple, with only one alternative wage level and shifts from full employment to complete
unemployment (and vice versa) that result from this rather simplified setting.

11 The normalizing factor θ0t is chosen so that θt ≥ (1−a)−1Zt if and only if Xt ≥0.

12 The productivity has a volatility equal to σ and the drift of productivity growth mean-reverts around the fixed
rate of μ+σ2/2.
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returns for the capital asset in the baseline, one-sector case (but not in the case
of a two-sector economy).

With the description of the modeling choice of θ completed, we can now
characterize our dynamic equilibrium in terms of the state variable X.

Proposition 1. There exists a unique equilibrium satisfying conditions
(A)–(E). Employment and rents are characterized as follows:

• If Xt ≥0, all labor is employed in the first economic sector. The rent
on capital is DKt =aθt , and the rent on labor DLt =(1−a)θt . Total
consumption is equal to θt .

• If Xt <0, all labor is employed in the less capital-intensive sector.
The rent on capital is DKt =0, and the rent on labor is DLt =Zt . Total
consumption is equal to Zt .

From the proposition above, we readily observe that our economy exhibits
a peso characteristic: as long as Xt ≥0, labor and capital meet in a productive,
capital-intensive economy and the consumption good is produced. Total
consumption is DKt +DLt =θt =(1−a)−1Zte

Xt . When Xt is close to zero but
positive, consumption gets close to (1−a)−1Zt , which is strictly greater than Zt

as a is between zero and one.As soon as Xt becomes negative, low productivity
implies that wages in the capital-intensive sector decline sufficiently for labor
to shift to the less capital-intensive sector. Total consumption–now fueled
solely by wages–becomes Zt . Thus, as Xt becomes negative, total consumption
experiences a decline of (1−a)−1Zt −Zt , that is, a drop equal to the rents on
capital that are no longer paid. Therefore, consistent with the peso literature, Xt

becoming negative13 triggers a disaster, or a peso event. However, in contrast
with previous work, we generate this disaster without modeling jumps in our
state variable.

We continue by calculating risk premia and volatilities in our setting.

1.7 Security prices
In this subsection, we compute closed-form security prices of any security s at
any time t using the Euler equation:

Pstu
′ (Ct )=Et

[∫ ∞

t

e−δ(l−t)u′ (Cl)Dsldl

]
, (13)

where Ct is the equilibrium consumption level of the representative agent at
time t . Alternatively, we shall employ the notation Pst =Ps(t,Xt ) to emphasize
dependence of the state variable Xt underlying our system’s dynamics.

13 Note that to accommodate the big push equilibrium, Proposition 1 can be readily modified: in this case, our
economy, once in a state of disaster, will remain in that state until the state variable Xt reaches a constant

threshold Xg .This corresponds to the barrier θ
g
t =θ0t e

Xg
.
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The calculation in Equation (13) is complicated by the fact that the stream of
cash flows Dst depends on the state of the economy, and more specifically
on whether labor works in the first sector or makes the alternative wage.
However, if we know the state of the economy the functional form of dividends
is known (and observable by everyone), and we shall exploit this computational
convenience.

We continue by calculating the price of the risky asset and its conditional
risk premium.

1.7.1 The price of the risky asset. For notational simplicity, when we
calculate the price of the capital asset we shall drop the subscript K from
the expression of the price; that is, we will denote PKt =PK (t,Xt ) by Pt or
P (t,Xt ).

To calculate the price of the capital asset, we proceed as follows. First, from
the Euler equation observe that the prices Ps of any security s at the current
time t and prices at any future time t ′ >t are linked by:

Ps(t,Xt )u
′ (Ct )=Et

[∫ t ′

t

e−δ(l−t)u′ (Cl)Dsldl+e−δ(t ′−t)u′ (Ct ′ )Ps(t
′,Xt ′ )

]
.

(14)
The formula above can be applied by taking the times t and t ′ to be those

when the labor transitions between the capital-intensive sector and the sector
ensuring the alternative wage.

For mathematical convenience, it is easier to calculate prices consistent not
with the social planner equilibrium (in which the economy recovers as long as
it is feasible to do so) but rather with the big push case. In this equilibrium, the
economy does not recover as soon as X≥0 but instead only when Xt ≥Xg >0.
The social planner equilibrium prices can then be derived from the big push
prices by taking the limit as Xg ↓0.

We can now turn to describing the dynamic equilibrium implied by
Proposition 1. Before we calculate prices for any values of the state variable
X, it is helpful to start by calculating prices at the times when the economy
shifts into and out of a crisis. Assume that P b

0 is the price of the risky asset
the first time the economy collapses after time zero (i.e., at the first time that
Xt <0, denoted here by T0). Once the economy collapses, it will take a time T1

to recover (T1 is how long it takes X to climb from 0 to Xg). At recovery, the
price is P

g

0 . Once the economy recovers, it will take some time, T2, until the
economy collapses again (this is how long it takes X to become negative, after
starting at Xg >0). The time between the two disasters is T1 +T2, and because
prices are linear in the reservation wage Zt ,14 when the economy collapses the

14 This is because dividends on the capital asset, as well as consumption, are linear functions of Zt . Because Zt grows

at a deterministic rate, for any security s and any times 0≤ t <t ′ we have that Ps (t,Xt =x)=eμ(t ′−t)Ps (t ′,Xt ′ =x).
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second time after zero, the price at that collapse will be P b
T0+T1+T2

=eμ(T1+T2)P b
0 .

After T3 years elapse, the economy will recover for the second time (as X

reaches Xg), and at that time the price will be P
g

T0+T1+T2+T3
=eμ(T2+T3)P

g

0 , and
so on. Therefore, to calculate the prices at a collapse and at a recovery, we
need to compute these values only for the first times the economy collapses
and recovers. To do so, we apply formula (14) twice: once by taking t :=T0 (the
first time of collapse) and t ′ :=T0 +T1 (the time of the first recovery after the
first collapse), and again by taking t :=T0 +T1 (the time of the first recovery),
and t ′ :=T0 +T1 +T2 (the time of the second collapse, which follows the first
recovery). From these two relationships we can solve for P b

0 and P
g

0 , and thus
find the prices at any recovery or collapse. We continue by calculating prices
for the social planner case, that is, the case of Xg ↓0. More specifically, the
following is proven in the Appendix:

Proposition 2. Let �(·;α) the function defined in Lemma A.1 and g(·;α,β)
the function defined in Lemma A.2. Then the price of the risky asset at a time
t when the economy collapses, denoted by P b

t , is described by:

P b
t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aZt

(1−a)1−γ

g′(0)−[�′(0)+γ −1]g(0)

�′(0)
if k>0

aZt

(1−a)1−γ

1− σ (γ −1)√
2δ+2(γ −1)μ

2δ+2(γ −1)μ−σ 2(γ −1)2
if k =0.

(15)

For brevity, we wrote g(x) :=g(x;δ+(γ −1)μ,γ −1) and �(x) :=
�(x;δ+(γ −1)μ).

Applying formula (14) again, for any time t and for t ′ =T0 (and noting that
right before the economy collapses at time T0, PT0 =P

g

0 ), we can readily obtain
the price of the capital asset for those times t when labor works in the capital-
intensive sector. Furthermore, applying the pricing formula for any time t when
labor works in the no-capital sector and for t ′ =T0 +T1 when the economy
recovers, we can also obtain the price in the state of the economy in which
all labor is dedicated to the second, less capital-intensive sector. The following
is proved in the Appendix:

Proposition 3. Let P b
t defined in Proposition 2, �(·;α) the function described

in Lemma A.1 and g(·;α,β) the function described in Lemma A.2 and
Equation (A1).
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Conditional on labor being employed in the capital-intensive sector at time
t , the following are true:

(1) The price of the risky asset is:

P (t,Xt )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
aZeμt

1−a
g(0;δ+(γ −1)μ,γ −1)+(1−a)−γ P b

t

]
×

×eγXt �(Xt ;δ+(γ −1)μ)

−aZeμt

1−a
eXt g(Xt ;δ+(γ −1)μ,γ −1) if k>0

aZeμt

1−a

eXt −e

(
γ−

√
2δ+2(γ−1)μ

σ

)
Xt

δ+(γ −1)μ−σ 2(γ −1)2/2

+(1−a)−γ P b
t e

(
γ−

√
2δ+2(γ−1)μ

σ

)
Xt

if k =0
(16)

(2) Let D(t,Xt ) be the rate of dividends paid to the risky asset.15 The
volatility of the returns of the risky asset is given by:16

V ol(Xt )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σγ +

eγXt

[
aZ

1−a
g(0)+

P b
0

(1−a)γ

]
�′(Xt )−eXt g′(Xt )−(1−γ )eXt g(Xt )[

aZ

1−a
g(0)+

P b
0

(1−a)γ

]
eγXt �(Xt )−eXt g(Xt )

if k>0

(σγ −√
2δ+2(γ −1)μ)+

2

σ (γ −1)+
√

2δ+2(γ −1)μ

D(t,Xt )

P (t,Xt )
if k =0

(17)

(3) The expected excess return of the risky asset is given by:

σγ V ol(Xt ) for all k≥0. (18)

(4) The Sharpe ratio of the returns of the risky asset is constant and equal
to σγ .

Conditional on labor working in the less capital-intensive sector at time t ,
the following hold:

15 From Proposition 1, D(t,Xt )=aθt =
aZeμt

1−a
eXt when labor is employed in the capital intensive sector.

16 For brevity, we wrote g(x) :=g(x;δ+(γ −1)μ,γ −1) and �(x) :=�(x;δ+(γ −1)μ).
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(1) The price of the risky asset is:

P (t,Xt )=

⎧⎪⎨
⎪⎩

P b
t �(Xt ) if k>0

P b
t e

√
2δ+2(γ−1)μ

σ Xt if k =0.

(19)

(2) The volatility of the risky asset is:

V ol(Xt )=

⎧⎪⎪⎨
⎪⎪⎩

σ
�′(Xt )

�(Xt )
if k>0

√
2δ+2(γ −1)μ if k =0.

(20)

(3) The expected excess return of the risky asset is equal to zero.

(4) The Sharpe ratio is equal to zero.

It is useful to compare these formulae with those obtained in the baseline
case. Recall that in this case the economy features only one sector, with a
constant intensity of capital a, and lognormal productivity (i.e., k =0). Absent
the mechanism that triggers the collapse, the dividends to the capital asset are
perpetually:

Dbaseline(t,Xt )=
aZeμt

1−a
eXt , for any t >0. (21)

In a similar vein, we could verify that the price of the risky asset satisfies:

P baseline(t,Xt )=
aZeμt

1−a

1[
δ+(γ −1)μ− 1

2
σ 2(γ −1)2

]eXt . (22)

Furthermore, it follows that in this case the volatility of the capital asset is
equal to V olbaseline(t,Xt )=σ (thus equal to the volatility of dividends) and
that the risk premium is given by σ 2γ (and therefore small). The baseline
model, therefore, is identical to the canonical asset pricing model, and as such
suffers from both the volatility and the equity premium puzzles. Furthermore,
the equity premium and the volatility are constant, and cannot conditionally
depend on the state of the economy.

We continue now by deriving empirical implications of our model and by
showing that the asset prices we derived are consistent with a variety of asset
pricing stylized facts.

2. Empirical Predictions

Having solved for prices of securities, we now turn to the predictions generated
by our model. In the first section, we investigate the validity of our labor
mechanism. We then demonstrate that our parsimonious model delivers many
asset pricing stylized facts in a unified setting.
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2.1 Capital’s share of income and disasters
From Proposition 1, we can infer the size of a consumption drop in disasters.
Specifically, a disaster translates into a decline of Zt/(1−a)−Zt in aggregate
consumption. In relative terms, this represents a [Zt/(1−a)−Zt ]/[Zt/(1−
a)] = a drop in total consumption during a disaster. Therefore, our model has
a very simple testable implication:

Proposition 4. More capital intensive economies experience larger disasters.

We will test this prediction in our empirical section, and find support for it.

2.2 Volatility
In this section, we analyze the conditional volatilities produced by our model.
The next results can be easily (but tediously) derived from formula (17). The
complete proofs are in the Appendix. We start first with the case of no mean
reversion in consumption growth, that is, the case of k =0.

Proposition 5. For k =0, conditional on the economy not being in a disaster
state:

(1) The volatility of returns is higher than the volatility of dividends for any
degree of relative risk aversion.

(2) The volatility is a nonincreasing function of prices.

(3) The volatility is an affine function of dividend yields.

We observe that for the case of no mean reversion in consumption, the model
explains several stylized facts regarding volatilities. Specifically, our model
predicts that prices are more volatile than dividends, thereby addressing the
excess volatility puzzle (see Shiller 1981; Le Roy and Porter 1981; West 1988).
Furthermore, the endogenous volatility generated by the model decreases with
prices, consistent with empirical observations reported in the arch literature.
This explains both the persistence observed in volatility and the asymmetric
property of it. Because both prices and volatility are endogenous in our
model, we are not proposing a volatility feedback mechanism (Campbell and
Hentschel 1992; Bekaert and Wu 2000), in which an anticipated increase in
volatility leads to a price decline. This result also should not be interpreted
as a leverage effect (Black 1976; Christie 1982), in which lower prices
drive the increased volatility; this effect should be expected even with no
leverage in the capital structure. It is also worth mentioning that our model
contrasts with Barro (2006) or Rietz (1988): whereas in these peso models
the volatility of consumption equals the volatility of prices, in our model
the latter is several times higher. Wachter (2013) generates a similar effect
by modeling probabilities of disaster that are time varying, as ours also are.
Changing the probability that a disaster occurs may change the frequency of
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the Rietz-Barro drops in prices and thus generate extra volatility.17 In contrast
with Wachter’s model, ours has only a single factor and agents with CRRA
preferences.

It has been noted that volatility is very persistent–French, Schwert, and
Stambaugh (1987) note that autocorrelation of volatility remains high even
after twelve monthly lags, and conclude that volatility is not stationary. We
show that in our model, when the state variable is a random walk, the volatility
is a function of this random walk and therefore is persistent. When the state
variable is mean reverting, we show that volatility has more autocorrelation
than the state variable. These implications of our model are consistent with the
empirical observations on volatility stationarity.

Perhaps the most important implication that our model has about volatility
is that the instantaneous volatility of the capital asset is itself a function of the
state variable. Consequently, when the state variable indicates that a disaster
is nearer, the representative agent requires more compensation for holding the
risky asset. As in our model the Sharpe ratio is constant, when the disaster
is more imminent, the volatility increases. By contrast, a Rietz-Barro disaster
model generates volatility through having many drops in prices. In this type
of exogenous crash model, disasters do occur without “warning signals” for
investors. Therefore, absent a variable whose role is to describe how the
distribution of collapses changes, a model with exogenous disasters cannot
match the conditional moments of asset prices.18

Volatility is known to be higher in recessions. As recessions are periods in
which equity prices are low, and because the volatility is a decreasing function
of price when there is low mean reversion in consumption growth, our model
can explain this stylized fact.

Volatility has been noted to react differently to a positive return innovation as
compared with a negative return innovation: volatility tends to decrease after a
realization of positive returns and increase after a realization of negative returns
(Nelson 1991). A positive realization of returns in our model is the result of a
positive innovation to the state variable.

From Equation (17), we can show that an increase in the state variable,
within a normal range of values for that variable, results in reduced
volatility. Likewise, a negative realization of returns in our model is the
result of a negative innovation in the state variable. A decline in the state
variable will thus result in increased volatility. These results are illustrated in
Figure 1.

17 Specifically, the lower the value of the state variable Xt (and thus the lower the consumption), the higher the
probability of disaster when k =0.

18 Such a variable would furthermore be an additional state variable, and therefore, a model with exogenous disasters
attempting to match conditional moments of asset prices will have at least two state variables. This is in contrast
with our model, which can capture asset pricing dynamics with a single state variable.
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Figure 1
Conditional volatility as a function of the state variable
This figure presents the conditional volatility as a function of the state variable, conditional on no disasters. We
present results for the three models we calibrate.
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2.3 Expected returns
In this section, we show how our model is consistent with several empirical
observations on the expected excess returns of the risky asset.

Proposition 6. Conditional on the economy not being in the disaster state,
and when k =0:

(1) Expected excess returns are a decreasing function of prices.

(2) Expected excess returns are an affine function of dividend yields.

The model predicts that for no mean reversion in consumption growth,
both expected excess returns and volatility are linearly related to dividend
yields. Fama and French (1988) and Campbell and Shiller (1988) report
that conditional excess returns are predicted by linear regressions with
dividend yield as the explanatory variable. The model here gives a theoretical
justification to these findings. Furthermore, as the model is based on
rational agents, this result does not imply any market inefficiency. The
result is not driven by any change in the agent’s risk aversion as, for
example, in habit formation models (Campbell and Cochrane 1999). Risk
in the model moves in tandem with dividend yields: when the risk is
higher, the agent requires a higher premium to hold the asset. Thus,
dividend yields predict returns because they are positively related to expected
returns.

Although in the general case of a mean-reverting state variable (i.e., k>0)
volatility and expected excess returns are not affine functions of dividend yields,
as they are both functions of the state variable, as are the dividend yields, it
follows that expected excess returns, as well as volatilities, are also (nonlinear)
functions of dividend yields. However, the functional form of this relationship
is not monotonic when the speed of mean reversion in consumption growth is
greater than zero. We plot the functional form of these relationships in Figure 2,
for k =0,k =0.005, and k =0.08. While the pattern for k =0 was analyzed above,
the patterns for k>0 (presented in Panels B and C of Figure 2) reveal another
fact about predictability: in bad times (which would be characterized by times
with high dividend-to-price ratios), there is an almost linear dependence of the
risk premium on dividend yields. This would justify predictability of returns
by dividend yields in bad times just as it does for the case k =0. By contrast,
in good times (i.e., times when dividend yields are low), the dependence of
expected excess returns on dividend yields is flat. This would imply in turn
that in good times, dividend yields do not predict returns nearly as well as
in bad times. This conditional predictability effect has been documented by
Henkel, Martin, and Nardari (2011), and in a theoretical setting in which
agents learn about regular and unusual fundamental states, David and Veronesi
(Forthcoming) generate similar conditional patterns of volatilities as functions
of price/earnings ratios.
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Figure 2
Dividend yields and the conditional contemporaneous equity premium
This figure presents the relationship between the dividend yield D/P and the conditional risk premium, that is,
the drift of returns less the risk-free rate. We present results for the three models we calibrate.
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3. Calibration and Empirical Tests

In this section we calibrate our model, test its empirical implications, and
compare our results to empirical studies that tested similar predictions.

We present three distinct calibrations. In one calibration, log productivity
is a random walk. In such a model, log consumption has a constant drift and
volatility when labor is employed in the productive sector. Conditional on labor
being fully employed in the capital intensive sector, therefore, consumption
growth is i.i.d. (and therefore stationary). Furthermore, conditional on labor
being employed in the less capital intensive sector, log consumption is
deterministic, with a constant drift. In particular, without considering the
less capital intensive sector, with this calibration our model reduces to the
standard asset price paradigm of pricing a log-normal consumption stream.
However, the transition between the cases in which all labor works in the capital
intensive sector and the alternative case of all labor being employed in the less
capital intensive sector is determined by the state variable X being positive
or negative. Because X is a Brownian motion (and therefore nonstationary),
it then results that log consumption is in turn nonstationary. As an alternative
to nonstationary returns, we also offer two alternative calibrations in which
the state variable is a mean-reverting diffusion and discuss their qualitative
implications.

We proceed to describing the calibration.

3.1 Parameter calibration
We use the monthly returns of the value-weighted CRSP index for the period
1927–2011, the risk-free rate of the Federal Reserve’s Publication H.15, and
the Bureau of Labor Statistics’ Consumer Price Index and productivity series.

The parameters of the model are 
 =(δ,μ,k,X,σ,γ,a,X0). Note that the
constant Z>0 is not among the parameters we need to fit: the reason is that
from Equation (16) it can be inferred that prices are linear functions of Z.
Together with the fact that dividends (to both labor and the risky asset) are also
linear functions of Z and that the risk-free rate is independent of Z, this fact
implies that expected returns, volatilities, and Sharpe ratios are independent of
Z as well.

We start by selecting parameters that tackle the equity premium puzzle as
it was exposed by Mehra and Prescott (1985). Thus, we select their proposed
value for the volatility of consumption, conditional on the economy not being in
a disaster state. As in these states of the world the consumption process is given
by θt =θ0t e

Xt , its volatility is equal to σ . Following Mehra and Prescott (1985),
we thus use σ =3.57%. We note that this may be an oversimplification, as the
volatility of the time series of consumption varied over time and, in particular,
decreased following World War II. Consumption of nondurable goods is the
least volatile: Mehra and Prescott (1985) find its volatility to be 3.57% for their
entire sample period, and according to Chapman (2002), it may be as low as
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1% for the postwar period.19 Alternatively, Barro (2006) and Wachter (2013)
calibrate this volatility to 2%.20 Furthermore, the consumption growth drift is
mean reverting in our model. To select a value, we note that Nordhaus (2005)
reports average consumption growth rates calculated in different periods and
using different methods. For the United States, the rates he reports range from
1.24% to 2.53% per annum. We thus fix this long-run mean of consumption
growth to 2%. Finally, the last parameter of interest for consumption growth is
its speed of mean reversion. We use three distinct values for the speeds of mean
reversion. First, we calibrate a model with a speed of mean reversion equal to
zero. In this model the returns are not stationary, but we study it to demonstrate
that our results are not driven by autocorrelation in consumption growth. We
then present a calibration in which consumption growth in good times is mean
reverting, with a speed of mean reversion inspired by Bansal and Yaron (2004).
Bansal and Yaron (2004) report an autocorrelation in quarterly consumption
growth that in our model would correspond to a speed of mean reversion of
k =0.08, and therefore we present results for a model with this speed of mean
reversion. Finally, we present a calibration in which the state variable is still
stationary (mean reverting), albeit with a very small mean reversion rate set to
k =0.005. Both the low mean reversion and the zero mean reversion calibrations
appear to match well with qualitative aspects of the data.

We select risk aversion so that the Sharpe ratio implied by our model,
conditional on the economy not being in a disaster state, is equal to 0.30.
This amounts to selecting γ such that σγ =0.30. We thus select γ =8.40. Note
that Mehra and Prescott (1985) consider that a model with γ <10, with the
observed volatility of consumption and the observed average equity premium,
offers a resolution to the equity premium puzzle. Therefore, our model tackles
the equity premium puzzle in the sense defined by Mehra and Prescott (1985).

We then set the value of a to correspond to the labor share of 1−a =0.64
observed in the U.S. economy.21 With this choice, as outlined in Section 1.6, the
relative drop of consumption in a crisis will be equal to a = 36%. This is a larger
drop than the 31% reported by Barro (2006) for the Great Depression. However,
we find it supportive of our model that the consumption drop suggested by our
setting is in range of what has been observed in the Great Depression.22

19 Aït-Sahalia, Parker, and Yogo (2004) argue that consumption of luxury goods is what should matter, because
equity holders are typically rich and satiated with the consumption of basic goods. They find that the volatility
of luxury goods consumption is an order of a magnitude higher than the volatility of overall consumption.

20 In our model, the volatility of dividends equals volatility of consumption in our model. Similar to consumption
volatility, the volatility of dividends also varies in time. For example, it exceeds 10% for the entire available
series in the United States, whereas it is smaller at around 5% in the postwar period.

21 See Kydland and Prescott (1982).

22 We note that this is also a much milder drop than if we calibrate the model assuming that the second sector was
a primitive economy. If that is the case, then the production function in the second economic sector should only
include raw labor, whose share of income is much lower. For example, in 1996, the raw labor’s share of income
was 4.9%, according to data compiled by Krueger (1999). This implies a drop of consumption in a disaster that
is equal to 100−4.9% = 95.1%. Calibrating to such an extreme outcome is beyond the scope of this study.
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Additionally, we set the value of the discount rate δ in a standard fashion. The
savings literature, for example, Hubbard, Skinner, and Zeldes (1995), uses val-
ues consistent with a discount rate e−δ =0.97. Following this, we set δ =3.1%.

Finally, we fit the remaining parameters, which are the long-run mean of
the state variable X̄ and its initial value X0. For the long-run mean of X, we
note that we are able to map a relationship between its value and how long X

spends in a disaster state (i.e., how long X stays under zero). We select X̄ so
that the average (simulated) time spent under zero matches the average duration
of consumption disaster periods reported by Barro and Ursua (2008), which is
3.6 years. This yields values of X̄ that are equal to 0.5793 when k =0.005 and
to 0.0146 when k =0.08. Finally, in the case of no mean reversion (i.e., k =0),
we do not need to fit X̄ because it has no effect on the dynamics of the state
variable X.

We then calculate the values of the state variable that are implied by the
observed path of the U.S. economy. To do so, we first select X0 such that
the first moments of the Brownian innovations Wt+dt −Wt , as implied by real
prices, correspond to a normal distribution N (0,dt) as the model assumes. To
obtain these innovations, we use the time series of real returns on the risky
asset. Specifically, we observe that by setting X0, we can calculate the price
P (0,X0) at the start of the calibration period. Using the returns in the data Ret1
for the first time period, we may thus infer the price P (1,X1)=P (0,X0)eRet1

at time 1. Using the formula for prices as given by Proposition 3, we can
thus infer X1, and so on. Once we have the time series of X, we could infer
the Brownian increments as Wt+dt −Wt =[Xt+dt −Xt −k(X̄−Xt )dt]/σ . When
there is no mean reversion, the state variable starts at X0 =0.1131. With a slow
speed of mean reversion, the initial value of the state variable is 0.0804, whereas
in the case of mean reversion speed consistent with Bansal and Yaron (2004),
the initial value of X is 0.0733.

Calibrating the model to price data follows a trend in disaster models
(e.g., Barro 2006; Gourio 2008a; Wachter 2013), but this is not a unique
choice. For example, Balvers and Huang (2007) calibrate a productivity-
based model to productivity data, whereas Barro and Ursua (2008) show that
these models may be calibrated to consumption data. Finally, in our model
a disaster occurs immediately: consumption drops suddenly and stays low
until recovery. Juilliard and Ghosh (2012) argue that it is important whether or
not a disaster model is calibrated to match the cumulative consumption drop.
Because the observed disasters were never instantaneous, it is important to
calibrate a model consistent with an observed path of the economy in which
such instantaneous drops were not observed in the U.S. data. It will become
apparent that in two of our calibrations, the United States did not experience a
disaster state.

Asummary list of the parameters resulting from our three distinct calibrations
(as differentiated through their respective values for the consumption growth
mean reversion speed k) is presented in Table 1.
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Table 1
Parameters resulting from calibration

Symbol Definition Values

Model 1 Model 2 Model 3

k Speed of mean reversion for consumption growth 0.000 0.005 0.080
X̄ Average distance from disaster − 0.5793 0.0146
X0 Initial value of the state variable 0.1131 0.0804 0.0733
σ Volatility of consumption conditional on no disasters 3.57% 3.57% 3.57%
δ Discount rate 3.1% 3.1% 3.1%
μ Average consumption growth conditional on no disasters, −σ2/2 2% 2% 2%
a Capital’s share of income 0.36 0.36 0.36
γ Relative risk aversion 8.40 8.40 8.40

This table presents the model parameters resulting from various calibration procedures. The state variable X is
mean reverting, following dXt =k(X̄−Xt )dt +σdWt .

3.2 Capital’s share of income and disasters
In this subsection we will test our labor mechanism. To do so, we note that
Proposition 4 assesses that more capital intensive economies should experience
larger consumption drops in a disaster. This is precisely the implication we will
test in this subsection.

To test this implication, we obtain data on labor’s share of income from
Gollin (2002) and on size of economic disasters from Barro and Ursua (2008).
Intersecting the data presented in these two studies produces a small sample of
twelve countries for which both labor’s share of income and size of disasters
are available.

Figure 3 presents the labor’s share of income (on the x-axis) plotted against
observed magnitudes of disasters (on the y-axis). Gollin (2002) reports both
naively calculated labor’s shares and adjustments designed to include the
operating surplus of private, unincorporated enterprises into the income share.
Following his work, we plot the naive labor’s share as well as the adjustments.
Whereas Gollin (2002) reports three such adjustments, we only use the first two,
as using the third one would further decrease our already small sample. Barro
and Ursua (2008) report magnitudes of consumption and GDPduring recessions
across the world. We use four different measures of disaster magnitude.
Specifically, to proxy for the magnitude of a disaster, we use both consumption
and GDP declines observed during recessions. In selecting the timing of these
declines, we use declines that occurred closest to the time when labor’s share
of income was measured as well as the largest observed drop in a country’s
available data. Using three measures of labor’s share and four measures of
disaster size yields the twelve plots of Figure 3.

From Figure 3, we observe that the relationship between labor’s share
of income and magnitude of disasters is negative for all measures used,
supporting our model’s empirical implication, while simultaneously attesting
to its robustness.23 Furthermore, our model appears reasonably calibrated to

23 The power of these tests is, however, small given that the sample contains only twelve data points.
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Figure 3
Labor’s share of income and disaster magnitude
This figure presents the labor’s share of income (on the x-axis) and the magnitude of consumption/GDP
shocks during observed disasters for the following countries: Australia, Belgium, Finland, France, Italy, Japan,
Netherlands, Norway, Portugal, Sweden, United Kingdom, and United States. The data are obtained from the
intersection of Barro and Ursua (2008) (decrease in consumption/GDP) and from Gollin (2002) (labor’s share of
income). We report results for four measures of disaster magnitude (from Barro and Ursua 2008): GDP decline
during a disaster (we use both the most recent observation as well as the largest decline) and consumption drop
during a disaster (we use both the most recent observation as well as the largest decline). We use three measures of
labor’s share of income (from Gollin 2002): naively calculated labor’s share of income, labor’s share of income
calculated adding the operating surplus of private unincorporated enterprises (OSPUE) to labor income, and
labor’s share of income calculated by proportionally dividing the operating surplus of private, unincorporated
enterprises between labor and capital. A fitted linear relationship is reported for each plot.

address the size of observed disasters around the world. For example, the
average disaster size among the twelve data points used in Figure 3 is 32.03%.
This corresponds to a labor’s share of income of 1−32.03% = 67.97%, which
is close to the value of 64% found in Kydland and Prescott (1982). The model
also may be useful to shed light on the expected size of a disaster, which is
equal to the capital’s share of income. As Gollin (2002) puts the labor’s share
of income roughly between 65% and 80%, our model in turn implies a potential
disaster size of 20% to 35%.

3.3 Conditional volatility and the equity premium
In this subsection we will discuss the empirical implications of our model as
it was calibrated in subsection 3.1. While we argued that some stylized asset
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Figure 4
Conditional values for the state variable
This figure presents conditional values for the state variable Xt , for the no-mean reversion calibration (k =0).

pricing facts are matched theoretically by our model, in this section we further
explore the quantitative insights offered by calibration.

We start by discussing how our model fits conditional moments of the
observed equity premium in the U.S. economy. To obtain conditional values for
the equity premium and for volatility, we simply have to apply the Equations
(17) and (18) to the values of the state variable. An example of the values of
the state variable for the case of k =0, is presented in Figure 4.

The conditional equity premia implied by our three calibrations are presented
in Figure 5, whereas Panel A of Table 2 presents statistics on the conditional
equity premium and on the volatility of the risky asset resulting from these
calibrations. For example, the model calibrated using a rate of mean reversion
consistent with Bansal and Yaron (2004) produces an average conditional
risk premium of 5.61% and an average conditional volatility of 18.69%. The
plots confirm the equity premium’s countercyclicality, which seems to be more
pronounced for the calibrations accounting for mean reversion in consumption
growth. As apparent from the plots, the conditional equity premium ranges
between 2% and 19%. These estimates seem consistent with previous estimates
of the conditional ex ante equity premium (e.g., by Fama and French 2002 and
Pastor and Stambaugh 2001).

We further simulate economies implied by our model24 and calculate
volatilities, risk premia and statistics on consumption and dividend growth
along these simulated paths. Panel B of Table 2 presents results from these
simulations. We observe that the average equity premia generated by our three

24 To simulate paths for our economy, we could draw an initial value from the stable distribution of X, when X is
mean reverting (k>0). For the case of k =0, however, we must make an assumption about X0, and we choose
the starting value of the U.S. observed economic path from a normal distribution centered at X0.
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Figure 5
The conditional equity premium
This figure presents the conditional equity premium for the three models we calibrate.
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Table 2
Calibration results

Panel A: Conditional moments

Model 1 Model 2 Model 3

Av. eq. prem. 4.83% 6.34% 5.61%
Av. vol. 16.11% 21.13% 18.69%
Periods of disaster yes no no

Panel B: Simulated moments, entire population

Av. eq. prem. 6.01% 6.35% 6.28%
(0.80%) (1.02%) (1.11%)

Av. vol. 20.02% 21.15% 20.93%
(4.91%) (7.32%) (8.22%)

Av. cons. growth 2.18% 2.01% 2.08%
(0.13%) (0.22%) (0.31%)

Av. cons. vol. 5.69% 4.93% 5.35%
(1.21%) (1.80%) (2.84%)

Av. div. growth 1.98% 1.97% 1.99%
(0.10%) (0.03%) (0.08%)

Av. div. vol. 10.08% 8.02% 11.40%
(5.19%) (3.73%) (4.64%)

Av. risk-free ret. 11.52% 12.49% 7.67%
(3.99%) (0.79%) (0.21%)

Av. risk-free vol. 0.01% 0.15% 2.40%
(0.01%) (0.02%) (0.62%)

Panel C: Simulated moments, no disasters

Av. eq. prem. 4.19% 3.61% 4.21%
(1.83%) (0.50%) (0.25%)

Av. vol. 14.01% 12.02% 14.03%
(2.90%) (1.71%) (0.67%)

Av. cons. growth 2.00% 2.01% 1.99%
(0.03%) (0.08%) (0.11%)

Av. cons. vol. 3.57% 3.57% 3.57%
(0.03%) (0.04%) (0.03%)

Av. div. growth 2.00% 2.01% 1.99%
(0.11%) (0.08%) (0.11%)

Av. div. vol. 3.57% 3.57% 3.57%
(0.02%) (0.01%) (0.02%)

Av. risk-free ret. 15.40% 13.83% 6.38%
(0.00%) (0.57%) (0.37%)

Av. risk-free vol. 0.00% 0.15% 2.40%
(0.00%) (0.01%) (0.05%)

This table presents alternative calibration results. Model 1 corresponds to the no–mean reversion case (that is,
k =0). Model 2 corresponds to the case of small degree of mean reversion, and Model 3 assumes k =0.08 as in
Bansal and Yaron (2004). Panel A presents averages for the conditional volatility and equity premium implied by
our model for the observed path of the U.S. economy, between 01/1927 to 12/2011. If the state variable dropped
below the disaster threshold during this observed sample path, we report that the U.S. economy experienced
disasters. The disaster period reported in Model 1 extended from 02/1932 to 06/1932. Panels B and C report
summary statistics of equity premium, volatility, and other asset pricing moments across 10,000 simulated paths
of the U.S. economy, as well as the standard errors of these averages in parentheses.

calibrations compare well to that observed in our sample, which is 7.11% from
January 1927 to December 2011. For example, the equity premia generated by a
rate of mean reversion in consumption growth that is consistent with Bansal and
Yaron (2004) is on average 6.28% (with a standard deviation across simulations
of 1.11%). At the same time, the zero mean reversion calibration produces a
lower average of 6.01%. The fact that the equity premium is still relatively
high for the case in which no mean reversion is considered suggests that our
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results are not driven solely by the presence of long-run risks in consumption
growth. The average simulated volatility is similar to that observed in our
sample, which is 24.51% on an annualized level (we note, however, that our
sample includes the volatile period of the Great Recession of 2008–2009). For
example, in the case in which we allow for low mean reversion (k =0.005),
the average simulated volatility is 21.15%, whereas this value is somewhat
lower for the case without any mean reversion in consumption growth, at
20.02%.Another interesting fact made apparent by simulations is that our model
exhibits an unconditional consumption growth volatility that is smaller than the
volatility of dividend growth, which is consistent with empirical observations.
This is because in our model, during a crisis dividends fall more than does
consumption.25

It is important to note, however, the ex post returns in a peso environment
may suffer from a positive survival bias as in Brown, Goetzmann, and Ross
(1995), and we made certain to document that the magnitude of equity premium
in our model is not driven by this bias. To do so, we separately analyzed the
risk premiums and volatilities on those paths on which our economy did not
suffer disasters. These results are presented in Panel C of Table 2. For the no-
mean reversion calibration, for example, the average simulated equity premium
for the paths which experienced no diaster during the 86 simulated years was
4.19%, with a standard deviation of 1.83%. This simulated value is less than
two standard deviations away from the observed equity premium in the U.S.
markets, which is 7.11% in our sample. The average volatility in the paths in
which a disaster did not occur was 14.01%, with a standard deviation of 2.90%.
By comparison, in a baseline model in which the economy has a single sector
and no disasters occur, the volatility of prices would equal that of consumption,
and would therefore be equal to σ =3.57%. By contrast, our model has the
capability to produce equity volatility that is about six times higher. These
simulations show that the concept of a peso economy may offer a complete
resolution to both the equity premium puzzle and the excess volatility puzzle.
We note, however, that our model exhibits high risk-free rates, as we assume
CRRA preferences for the representative agent. Barro (2006) circumvents this
problem by arguing that the actual risk-free rate should be the risk-free rate
derived in our model multiplied by an average recovery rate of treasuries that
may default during disasters. Making such an assumption would decrease the
risk-free rate while increasing the risk premium. Even though the level of
the risk-free rate is high, it is apparent from Table 2 that its volatility is low,
consistent with what has been observed empirically.

The comparison between the calibration with the speed of mean reversion
used by Bansal andYaron (2004) of k =0.08 and a small speed of mean reversion
of k =0.005 deserves some discussion. First, the average conditional value of

25 Credit and gratitude for pointing this out to us go to an anonymous referee. Traditional peso models assume
leverage to obtain this effect; by contrast, we do not need this assumption.
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the equity premium as implied by the calibration with a small mean reversion
rate of k =0.005 is higher at 6.34% than the same value for the case of Bansal and
Yaron’s mean reversion speed of k =0.08. Furthermore, the countercyclicality
of equity premium is more pronounced in the case of a small mean reversion
speed, as apparent in Panel B of Figure 5. Finally, the range of the conditional
equity premium implied by the calibration with a small speed of mean reversion,
as apparent in the same Figure 5, is wider. In particular, the equity premium
takes values around the low bound of 2% during the nonvolatile late 1960s
and reaches values as high as 19%, whereas in the calibration with a mean
reversion speed of k =0.08, the equity premium appears bound from below by
a relatively high value of 4% during the late 1960s and never reaches values
higher than 15%.

Finally, we note that in our Pareto-optimal equilibrium disasters occur only
when there is no alternative and that no arbitrary shifts of the economy into
the disaster state are possible. To our model, one may also add unpredictable
consumption disasters in the manner inspired by the current disaster literature
(e.g., Wachter 2013). Adding such arbitrary disasters will have the effect of
increasing the volatility of the risky asset (and hence, the equity premium),
without changing the conditional implications of our model.

We now turn to examining returns predictability.

3.4 Returns predictability
In this subsection, we test the hypothesis that the dividend yield implied
by our model predicts conditional excess returns, consistent with empirical
observations (e.g., Campbell and Shiller 1988; Cochrane 1992; Fama and
French 1988; Keim and Stambaugh 1986; Stambaugh 1999 pointed out that
dividend yields predict excess returns). First, we note that in our model, the
conditional risk premium is a function of dividend yield.26 For the case of
no-mean reversion, for example, this function is in fact affine. As conditional
excess returns are an affine function of dividend yields (as they are proportional
to conditional volatility, which in turn is an affine function of dividend yields), it
is then natural that dividend yields predict returns one period ahead via a linear
relationship (a regression equation). The functional forms of these relationships
between dividend yields and conditional risk premiums for all the cases we
calibrate are illustrated in Figure 2.

As dividend yields and expected excess returns are linked in every path of
our economy, we can test the returns’ predictability, as implied by our model,
in two ways. In the first of these tests, for all data points in our U.S. sample, we
calculate the levels of dividend yields implied by our model. This is possible,
as using our model we can infer the value of the state variable X at that point in
time, and the value of the dividend yield as predicted by our model is a function

26 As implied by the third part of Proposition 5.
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Table 3
In-sample return predictability, 1953–2011

Model 1 Model 2 Model 3 Model 4 Model 5

Panel A: Quarterly predictability, 1953:Q1–2011:Q3

Model implied D/P 0.15 0.17 0.26
(2.48) (2.71) (1.00)

Actual D/P 0.27 −0.04 0.51
(2.09) (−0.15) (0.29)

cay 0.81 1.03
(2.86) (2.60)

R2 2.76% 1.53% 2.77% 3.62% 5.74%

Panel B: Annual predictability, 1953–2010

Model implied D/P 0.19 0.31 0.37
(3.23) (2.33) (2.20)

Actual D/P 0.25 0.03 0.01
(3.01) (0.12) (0.11)

cay 1.13 0.38
(3.18) (1.14)

R2 20.75% 25.67% 28.78% 16.27% 31.56%

This table presents predictive regressions of excess returns on dividend yields in the time series observed in the
US economy between 1953:Q1 and 2011:Q3. We employ two separate variables for dividend yields: the first
one is the dividend yield observed in the U.S. data. The second is the dividend yield as implied by our model,
conditional on the observed equity returns in the U.S. cay is the Lettau and Ludvigson (2001) variable. t-stats
are in parentheses. We use the calibration consistent with Bansal and Yaron (2004), in which the consumption
growth mean reversion speed is k =0.08.

of the state variable. This implied level of dividends will be different from the
dividend yield observed in the data, for example, because distribution schemes
used by firms in the real world consist of more than just paying dividends (see
Boudoukh et al. 2007). By contrast, the dividends in our model are the only
possible form of payout. We can then compare the predictability power of the
dividend yields backed out from our model to that of the observed dividend
yield or to other predictors of returns such as the cay, which has been proposed
by Lettau and Ludvigson (2001). Because the data available on cay start in
1953, we restrict our sample to 1953:Q1 to 2011:Q3.

In Table 3 we report the results of such predictive regressions for 1953–2011.
The frequencies reported are quarterly and annual, and, given the persistence
shown by dividend yield ratios and documented by Lettau and Wachter (2007),
results on predictability at shorter horizons should be interpreted with caution.
In Table 3, we observe that the model-implied dividend yield predicts excess
returns at quarterly and annual intervals and that its predictive power is higher
than that of the observed dividend yield. At the longer (annual) horizon, the
predictive power of the model-implied dividend yield subsumes that of cay.
We can therefore conclude that our model-implied dividend yield passes this
first predictability test.

To further assess the validity of our model, we verify that dividend yields
predict excess returns at quarterly and annual horizons in simulated paths
of our economy. Panel A of Table 4 presents averages of the coefficients of
D/P , as well as averages of the R-squareds of these regressions. The numbers

2948

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/26/11/2916/1612684 by guest on 12 June 2024



[14:28 25/9/2013 RFS-hht054.tex] Page: 2949 2916–2960

Asset Pricing with Endogenous Disasters

Table 4
Simulated predictability

k =0.000 k =0.005 k =0.080

β R2 β R2 β R2

Panel A: Returns predictability

Quarterly 0.25 5.22% 0.22 3.48% 0.09 1.48%
Annually 0.39 11.21% 0.33 9.00% 0.18 6.44%

Panel B: Consumption growth predictability

Quarterly 0.001 0.00% 0.008 0.17% 0.011 0.12%
Annually 0.001 0.01% 0.001 0.03% 0.011 0.05%

This table presents results from predictive regressions on simulated data from the three models we calibrate. For
10,000 simulated data samples, we aggregated simulated data quarterly and annually and we ran the regressions
Rt+1:t+1+i −rft+1:t+1+i =α+β(D/P )t +εt+i+1 (Panel A) or the regression �Ct+1:t+1+i =α+β(D/P )t +εt+i+1
(Panel B). Estimates of β and the R-squareds from both regressions are reported.

are consistent with stylized facts on returns, also confirmed by predictive
regressions on U.S. data reported in Table 3. Finally, consumption growth
is unpredictable in our model; we test whether dividend yields predict it and
report the results of these tests in Panel B of Table 3. The results are consistent
with the stylized fact that dividend yield does not predict consumption growth.
This concludes our second battery of predictability tests.27

3.5 Time-series properties of Sharpe ratios
The ex ante Sharpe ratio in the model is constant, conditional on no disaster
(see Proposition 3) and equal to σγ . This might seem at odds with an
observation that in the U.S. data, volatility and returns do not necessarily move
together. Glosten, Jagannathan, and Runkle (1993), for example, find a negative
relationship between risk and return. Whitelaw (1997) documents that Sharpe
ratios vary considerably over time, and Whitelaw (2000) shows that in an
economy with time-varying transition probabilities, the ex post time series of
volatility and returns, under constant relative risk aversion (i.e., constant ex
ante Sharpe ratio), exhibits a complex time-varying relation, which is negative
in the long run. As the model we develop also has time-varying transition
probabilities of disaster, we show similar properties of the ex post Sharpe ratio.

To study the time series properties of the realized Sharpe ratios in our model,
we simulate daily paths of monthly histories, each one 1,032 months long.
We draw paths of our model until we reach 10,000 paths that did not exhibit a
disaster, consistent with the path observed in the U.S. economy. For each month,
we compute the resulting volatility and the realized excess returns of that month.
Dividing the two gives us the Sharpe ratio of that month. To document their
time variability, we regress the 1,032 monthly Sharpe ratios on the dividend
yield at the beginning of the month and record the statistical significance (i.e.,
the t-statistics) of this regression.

27 Note that we use the dividend yield D/P as a predictor, rather than log(D)−log(P ). This is due to the fact that,
in our model, D =0 when the economy is in the disaster state.
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The null hypothesis of constant Sharpe ratios would imply that they are not
predictable by any variable. In that case, the t-statistics would be normally
distributed with a zero mean. In the simulated model in which productivity is
a random walk, however, this is not the case: the mean t-statistic is 2.87, and
81% of the simulated histories result in a statistically significant relationship
between realized Sharpe ratios and dividend yield.

To understand what might drive this spurious predictability, it is instructive
to analyze the variation in realized Sharpe ratios. A large negative shock at
the beginning of the month (which can be predicted, as we have shown, by a
low dividend yield at the end of the previous month) may cause volatility and
expected returns to increase for the rest of the month. However, the change
in expected returns is typically small, and most likely the end result for the
month would be high volatility and negative returns. This effect weakens the
relationship between realized returns and volatility, and makes realized Sharpe
ratios seem to comove with returns (and hence to appear predictable by dividend
yields).Another issue contributing to the spurious predictability of Sharpe ratios
is the survival bias, which is driven by the fact that ex post, the possible break in
the economy did not happen. With crises, a high dividend yield may be followed
by either a period of recovery (and high returns) or by a crisis in which the risk
premia and the Sharpe ratios are zero. Conditioning on disasters not occurring
reduces the possibility that high dividends yields are followed by lower Sharpe
ratios.

Finally, we note that the model could be extended to include sources of
volatility that are orthogonal to our pricing kernel. For example, such volatility
could arise if the division of output between labor and capital changed. This
would affect asset prices, but because it does not change overall consumption,
it would not command a price premium. The existence of such additional
sources of volatility would cause Sharpe ratios to be even more countercyclical.
Likewise, having σ decrease with Xt (i.e., a setting in which being farther away
from the disaster triggers an increase in the stability of production) would result
in even stronger countercyclical Sharpe ratios.28

4. Conclusions

Peso models solve many asset pricing puzzles and are testable. We add to this
literature by proposing a parsimonious, one-factor model with CRRA agents in
which the disasters occur endogenously. Having endogenous disasters not only
conveys intuition about the link between crashes and the mechanism causing
them but also allows agents the possibility to act as the disaster draws near. In
our case, the nearer the disaster, the higher the market volatility.

28 Such an assumption also has the potential to generate procyclical short-term rates. It is not surprising that disaster
models have the potential to resolve a multitude of bond pricing puzzles. For example, Gabaix (2009) shows that
different exogenous disaster specifications may solve a multitude of asset pricing puzzles. Bekaert, Hodrick, and
Marshall (2001) also show that some term structure anomalies may be explained by peso arguments.

2950

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/26/11/2916/1612684 by guest on 12 June 2024



[14:28 25/9/2013 RFS-hht054.tex] Page: 2951 2916–2960

Asset Pricing with Endogenous Disasters

Our model produces the simple implication that more capital intensive
economies experience larger disasters. It is also capable of matching several
stylized asset pricing facts: because proximity to disasters attracts volatility, our
model is capable of generating high volatility and, in turn, high equity premia,
with a simple CRRA utility.

In addition, our model goes beyond these facts, in the sense that it is capable
of addressing a series of conditional asset pricing stylized facts. For example,
not only is the price volatility in the model high, but it is also countercyclical.
Because both prices and volatility are endogenous, this is neither a volatility
feedback effect nor is this a leverage effect, as in our model there is no leverage.
The conditional values of the state variable appear to follow the state of the
U.S. economy.

Because expected returns, as well as volatility of the risky asset, in our model
are functions of dividend yields conditional on no disasters (and in a special
case, affine functions), we offer a rationale for why dividend yields are excess
returns predictors.

Whereas our model is similar to disaster models in which the probability
of disaster is time varying, having only one factor and agents with constant
relative risk aversion renders our simpler and more tractable.

To create our setting, we relied on existing economic models, which we
extended by adding dynamics and then calculating asset prices. From this
perspective none of the modeling assumptions are new, but their integration
is. Given the minimality of our model, as well as its ability to match several
asset pricing facts, we view our study as a step forward, moving the peso
literature toward a unified asset pricing model.

Appendix

Proof of Lemma 2
If firms (rationally) expect that labor works in their sector, then L̄e

it =1 for each firm i. If also
DLt =(1−a)θt , then by Equation (7) it results that Kit =Lit (for each firm). Because the aggregate
supply of capital is one, the aggregate demand of labor will also be one, and the labor market
will clear. This is also consistent with laborers being willing to supply labor to firms, as DLt =
(1−a)θt >Zt .

When θt < (1−a)−1Zt , labor working in the first sector is no longer feasible. Assume by absurd
that firms expect labor will work for them, that is, L̄e

it =1. We clearly cannot have that DLt ≤
(1−a)θt , because this will result in DLt <Zt , which means that the laborers will prefer to work
in the less capital intensive sector, which pays the higher wage of Zt . We must then have that
DLt > (1−a)θt . From Equation (7), it results that LD

it <KD
it for each firm i. This however results

in the supplied labor aggregating to
∑

i L
D
it <

∑
i K

D
it =1, which means that the labor market does

not clear. This is a contradiction with the equilibrium definition.
Labor working in the less capital intensive sector is always possible: if each firm expects that

all labor will be working in this sector, as clearly DLt ≥Zt >0, from Equation (7) it results that
LD

it =0 for each firm. With no labor, the firms’ output is zero, and hence, the rents paid to capital
are zero as well, that is, DKt =0. Both Equations (7) and (8) are satisfied regardless of the value of
KD

it , in particular, we can select these values so that condition (C) of the equilibrium is met.
Finally, we address the case of mixed equilibrium. In the mixed equilibrium, the wages paid by

the less capital intensive technology must be equal to the wages paid by capital intensive firms,
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that is, DLt =Zt . From Equation (7), LD
it =KD

it

[
(1−a)θt L̄

e
itZ

−1
t

]1/a

for each firm i, and in order

to sustain the condition (C) of the equilibrium as well as the condition (B), we must have that

L̄t =
[
(1−a)θt L̄tZ

−1
t

]1/a

, or that L̄t =[Zt (1−a)−1θ−1
t ]1−a . Because in the mixed equilibrium

case L̄t <1, this is sustainable if and only if θt > (1−a)−1Zt .
We continue by presenting a few facts regarding functionals of Ornstein–Uhlenbeck processes,

which are useful for our calculations. Some general sources of formulae used in this article
are Borodin and Salminen (1996), Section 7 (for functionals involving the Ornstein–Uhlenbeck
diffusions) and Abramowitz and Stegun (1964) (for the special functions involved in the
calculations of the Ornestein–Uhlenbeck functionals, such as the definition of parabolic cylinder
functions). �

Functionals of Ornstein–Uhlenbeck processes
In what follows, we illustrate how to calculate in closed-form the functionals needed in our
formulae. Unless otherwise specified, all the formulae below refer to an Ornstein–Uhlenbeck
diffusion X, given by:

dXt =k(X−Xt )dt +σdWt .

The following lemma is from Borodin and Salminen (1996):

Lemma A.1. Let X0 =x and denote by T the first time that X reaches zero. Then for any α>0,

�(x;α) :=E
[
e−αT |X0 =x

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ek(x−X)2/2σ2

ekX
2
/2σ2

D−α/k (−(x−X)
√

2k/σ )

D−α/k (X
√

2k/σ )
,x <0

ek(x−X)2/2σ2

ekX
2
/2σ2

D−α/k ((x−X)
√

2k/σ )

D−α/k (−X
√

2k/σ )
,x ≥0

,

where D is the parabolic cylinder function.

Lemma A.2. Let Xt be an Ornstein–Uhlenbeck process like above, and let T denote the first
time X reaches zero. Then

E

[∫ T

0
e−αt−βXt dt |X0 =x

]
=�(x;α)g(0;α,β)−e−βxg(x;α,β).

where �(·) is the function from Lemma A.2 and g(·;α,β) is any (closed-form) solution of the Laplace
equation:

gxx +(b−ax)gx +(d−cx)g =e, (A1)

with the constants a,b,c,d,e defined as:

a =2k/σ 2

b=−2β +2kX/σ 2

c=−2kβ/σ 2 (A2)

d =β2 +2[−kXβ−α]/σ 2

e=2/σ 2.

We continue by presenting a closed-form solution for g(·;α,β) in Lemma A.2. For convenience
we will drop the α,β from the script for g.
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Closed-form solution for Equation (A1)
Equation (A1) is a version of the Laplace ordinary differential equation, and techniques to solve it
in closed-form are described in Davies (1985, 342). Following Davies (1985), we start by looking
for a solution of the form

g(x)=
∫ c2

c1

S(s)esxds,

for some constants c1,2. Substituting in (A1) and then integrating by parts, we are left with a first
order ordinary differential equation for S, which can be solved in closed form. We select c1,c2 so
that one of them is equal to ±∞ and the other constant is zero. The choice of +∞ or −∞ is such
that the function f (x)=ax+c does not have a root in the interval [c1,c2]. In our case, we select
c1 =−∞, c2 =0.

With this, we can readily check that the solution g is given by:

g(x)=e|c|d+a−bc/a+c2/a2−1
∫ 0

−∞
|as+c|1−(c+a−bc/a+c2/a2)e−s2/2a−(b/a−c/a2−x)sds. (A3)

The derivative of g is given by:

gx (x)=e|c|d+a−bc/a+c2/a2−1
∫ 0

−∞
|as+c|1−(c+a−bc/a+c2/a2)se−s2/2a−(b/a−c/a2−x)sds. (A4)

The functiong can be further simplified using the parabolic cylinder function D (seeAbramowitz
and Stegun, Ch. 19). To simplify notation, let p :=1−(c+a−bc/a+c2/a2), q := (2a)−1, and r(x) :=
b/a−c/a2 −x. Then

g(x)=
e−c2q/a2+r(x)c/a ap−1/2

√
2

(2q)p/2

2πD−p−1
(√

a/2(2cq/a2 −r(x)/a)
)


(−p)e−(2c−r(x))/(8a)
.

Proof of Proposition 2
Before starting the proof, we start by outlining the idea. First, as we mention at the outset, our
model is a limit of a big push-type model. In the big push model, the economy collapses as soon
as the state variable X becomes negative, and it does not recover until X reaches a strictly positive
value Xg . We shall thus start by deriving the pricing relationships at first for a general Xg >0, then
take the limit as Xg →0. We further note that the values for the dividends paid to the risky asset
and for the consumption process are known at any point in time.

In the general case, an economy started at X0 =x >0, in full employment, will remain in this
state until Xt <0. When that happens, at time T0, the price of the risky asset becomes P b

0 , and the
economy shifts into the disaster state. The economy will remain in this state until time T0 +T1, and
at that time the economy will recover, and the price of the risky asset will become P

g

0 .29 Once
recovered, the economy will remain in full employment until X becomes negative again, at time
T0 +T1 +T2. Despite the fact that the economy is in the same state at time T0 +T1 +T2 as it was at time
T0, due to growth the price of the risky asset is now eμ(T1+T2)P b

0 . Similarly, at time T0 +T1 +T2 +T3,
when X will reach Xg and the economy will recover the second time, the price of the risky asset
will be eμ(T2+T3)P

g

0 . In general, as mentioned in Section 1.7.1, for any times t <t ′, the price of the

risky asset at the same value of the state variable X satisfies P (t,Xt =x)=eμ(t ′−t)P (t ′,Xt ′ =x).
Therefore, in order to calculate prices when the economy collapses or recovers, we only have to
calculate these prices at the first collapse and first recovery–any other values can be inferred by
growing these prices at the rate μ. Finally, note that from Proposition 1, the price of the risky
asset at zero is the price right before the economy collapses, in particular, that as Xt ↓0 near the

29 The subscript equal to zero is meant to signify that these are the first observed collapses and recoveries on a path
started conventionally at time t =0.
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first time of recovery T0 +T1, then limXt ↓0P (t,Xt )=P
g

0 (so the price as a function of the state
variable X is continuous from the right); and that if t is around the first time of collapse T0,
limXt ↑0P (t,Xt )=P b

0 <P (T0,0) (in other words, the function P (t,·) has a finite left limit).
We start by first applying the pricing Equation (14) for a time t where the state variable Xt =0,

right before the time T0 when the economy collapses, and for a time t ′ >T0, for which the economy
is already in the collapse state (such a time exists almost surely because the economy recovers only
after X reaches Xg >0). Because no dividends are paid after the economy collapses, u′(Ct )P (t,0)=
E[e−δ(t ′−t)u′(Ct ′ )P (t ′,Xt ′ )]. Taking the limit as t ′ ↓0, we obtain that P b

0 = (1−a)γ P (t,0). Taking
the limit as Xg ↓0, we obtain that P b

0 = (1−a)γ P
g

0 . To obtain a second relationship linking P b
0

to P
g

0 , it is useful to analyze the behavior of our economy between a recovery time t :=T0 +T1

(where the price is P
g

0 , and the state variable is equal to Xg), and the stopping time t ′ when the
state variable (started at time T0 +T1 from Xg) reaches zero (immediately afterward, the economy
slips into the disaster state because there are no isolated zeros of a Brownian motion). Pushing at
the same time Xg ↓0, so at recovery, Xt =0, we obtain that:

u′(C0)P g

0 =E

[∫ t ′

T0+T1

e−δ(s−T0−T1)u′(Cs )Dsds

]
+E

[
e−δ(t ′)u′(Ct ′ )eμ(t ′−T0−T1)P

g

0

]
.

Above, the last term in the equation takes into account the fact that if Xg is close to zero, then
the price at zero converges to eμ(t ′−T0−T1)P g . Substituting the expressions for consumption and
dividends paid to the capital asset, we obtain that:

P
g

0 =
aZ

1−a
E

[∫ t ′

T0+T1

e−[δ+(γ−1)μ]s−(γ−1)Xs ds

]
+P

g

0 E

[
e−[δ+(γ−1)μ](t ′−T0−T1)

]
.

Isolating P
g

0 we obtain that:

P
g

0

(
1−E[e−(δ+(γ−1)μ)t ′ ]

)
=E

[∫ t ′

T0+T1

e−[δ+(γ−1)μ]s−(γ−1)Xs ds

]
,

or equivalently, that

P
g

0 =
E

[∫ t ′
T0+T1

e−[δ+(γ−1)μ]s−(γ−1)Xs ds
]

1−E[e−(δ+(γ−1)μ)t ′ ]
.

We can then use Lemmas A.1 and A.2 to calculate the expectations above. As both the numerator
and the denominator go to zero as Xg ↓0, we can use l’Hospital’s rule to find the limit and uncover
the formula for P

g

0 . We then use that P
g

0 = (1−a)γ P b
0 to find P b .

For the case when k =0, the calculations are simplified because some of the Brownian Motion
functionals take simpler algebraic forms. Specifically, if k =0 and Xt =σWt with W being a
Brownian Motion, Borodin and Salminen (1996) gives that:

E[e−[δ+(γ−1)μ]t ′ ]=e−Xg
√

2δ+2(γ−1)μ)/σ .

Furthermore,

Mt :=
∫ t−T0−T1

T0+T1

e−[δ+(γ−1)μ]s−(γ−1)Xs ds+
e−[δ+(γ−1)μ]t−(γ−1)Xt

δ+(γ −1)μ− 1
2 σ 2(γ −1)2

is a martingale. Applying the optional sampling theorem, we obtain that EMt ′ =M0. Noting that
XT0+T1 =σWg and that M0 =1/

(
δ+(γ −1)μ−σ 2(γ −1)2/2

)
, we obtain a closed form expression

for P g . Using again l’Hospital’s rule we obtain the formula in Proposition 2. �
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Proof of Proposition 3
We can then apply Equation (14) one more time with t being the current time and t ′ =T0, the first
time that Xt becomes negative, and we can thus obtain the equation for the price of the capital
asset (16), conditional on all labor being employed in the capital intensive sector at time t <T0:

u′(θt )P (t,Xt )=Et

[∫ T0

t

u′(θl )e
−δ(l−t)Dldl+e−δ(T0−t)u′(θT0+)eμ(T0−t)P b

0

]
.

In the above equation, Dl represents the dividend to the risky asset paid at time l if all labor
is employed in the first sector. Thus Dl =aθl . We can next use the formulae in Lemmas A.1 and
A.2 to calculate the expectation of the integral above, as well as the expectation of the exponential
of the hitting time of X, and we can readily obtain the formula for the price of the capital asset.
For the particular case of k =0, we simply note that the formulae of Lemmas A.1 and A.2 simplify
(using the same martingale argument as in the proof of Proposition 2). For example,

E

[∫ T0

t

e−[δ+(γ−1)μ](l−t)−(γ−1)Xl dl

]
=

e(1−γ )Xt −E[e−[δ+(γ−1)μ](T0−t)]

δ+(γ −1)μ−σ 2(γ −1)2/2
,

and the expectation of the exponential stopping time can be further calculated as

E[e−[δ+(γ−1)μ](T0−t)]=e−Xt
√

2δ+2(γ−1)μ/σ .

This proves the first point of the Proposition.
To prove point 2, note that conditional on labor working fully in the first economic sector, and

with the dividends to the capital asset being D(t,Xt )=aθt , applying Itô’s lemma to P (t,Xt ) implies
that the returns R of the capital asset are given by:

dRt =
dP (t,Wt )+D(t,Xt )dt

P (t,Xt )
=

(
Pt (t,Xt )+ 1

2 σ 2PXX(t,Xt )+D(t,Xt )

P (t,Xt )

)
dt +

PX(t,Xt )

P (t,Xt )
dXt .

(A5)
As dXt =k(X−Xt )dt +σdWt , the volatility of the capital asset is given by:

V ol(t,Xt )=σ
PX(t,Xt )

P (t,Xt )
.

A simple differentiation of the price in part 1 of the proposition produces the formula for the
volatility of the capital asset for the case of k>0. For the case of k =0, the identity showing that
the volatility σPX/P is reduced to the formula in the Proposition can be verified readily.

The prices, as well as the volatility in the case when the economy is in the less capital intensive
state, can be readily obtained as follows. First, note that in this state, rents to the capital asset are
zero, and by Euler’s pricing equation simplifies to

P (t,Xt )=E

[
e−[δ+(γ−1)μ]T

]
(1−a)−γ P

g

0 ,

where T is the time the economy spends in the disaster state (which is equal to the time it takes
X to reach Xg , when the economy recovers, and then we push g ↓0). When k =0 the expression

of the expectation above further simplifies to e
√

2δ+2(γ−1)μXt /σ . This, coupled with the equation
P

g

0 = (1−a)γ P b
0 , yields the expression for price. Volatility can be calculated, just as in the case in

which the economy is in the capital intensive state, to be σPX/P ; the expression for the volatility
follows.

To calculate expected excess returns, we need to calculate first the risk-free rate. It is convenient
to start by calculating the price of a riskree bond with maturity τ >0. Let this price be B(t,Xt ,τ ).
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In what follows, it will be useful to note that for each time τ , Xτ is normally distributed. Let

mt,τ :=Xt +(X−Xt )(1−e−kτ )

vτ :=
σ
√

e2kτ −1√
2kekτ

.

Then, if X starts at Xt at time t , after some time τ elapsed, we have that

Xt+τ ∼N (
mt,τ ,vτ

)
.

Let us first focus on the case in which the economy is in the capital intensive state. In this case,

u′(θt )B(t,Xt ,τ )=e−δτ
E
[
u′(θt+τ )1{Xt+τ ≥0} +u′(Zte

τμ)1{Xt+τ <0}
]
.

Substituting θt , we obtain that:

B(t,Xt ,τ )=e−δτ−γμ+γXt E
[
e−γXt+τ

]
+E

[
(1−e−γXt+τ )1{Xt+τ <0}

]
.

Above, the first expectation is given by:

E
[
e−γXt+τ

]
=

1√
2πvτ

∫ ∞

−∞
e−γ xe

−
(x−mt,τ )2

2vτ dx.

Completing the square under the integral, changing the variable so that we are left integrating the
normal density function, we can simplify the above expression to:

E
[
e−γXt+τ

]
=e

−γ [Xt +X(1−e−kτ )]+ γ 2σ2(e2kτ −1)
2ke2kτ .

If we are interested in calculating the risk-free rate, we are interested in the yield of the above bond
when its maturity goes to zero. The yield of the bond B is given by y(t,Xt ,τ )=−log[B(t,Xt ,τ )]/τ .
As τ ↓0, we note that 1{Xt+τ <0} goes to zero almost surely, and since it is bounded, the dominated
convergence theorem implies that around τ =0+ we have that:

rf (t,Xt ) :=y(t,Xt ,0+)= lim
τ↓0

1

τ

[
(δ+γμ)τ −γXt +γXt e

−kτ +γX(1−e−kτ )− γ 2σ 2(e2kτ −1)

4ke2kτ

]
.

It can be easily verified that the limit above results in a risk-free rate

rf (t,Xt )=δ+γμ−γ 2σ 2/2+kγ (X−Xt ).

Note that the risk-free rate is large in our model (as it contains a term of γμ), as we have used
a power utility. Two solutions exist to decrease the risk-free rate resulting from the equilibrium.
The first was proposed by Barro (2006), who argues that the actual risk-free rate we use should be
equal to rf as implied by our calculations, multiplied by an average recovery rate reflecting the
probability of default of treasuries during disasters. Making such an assumption would increase
the equity premium of the model, leaving the volatility unchanged. The other method to decrease
the risk-free rate would be to employ Epstein and Zin utility functions. In this case, we are unable
to obtain closed-form solutions for asset prices and the risk free rate. Within our model, we can
show that we can obtain a high volatility and a correspondingly high equity premium using the
standard CRRA utility function.

In a similar vein, conditional on the economy being in the less capital intensive state,

rf (t,Xt )=δ+γμ.

We now turn to calculating the risk premium. We start first with the case in which the economy
is in the capital intensive state at time t .
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From formula (A5), we also calculate the expected returns on the risky asset as:

μ(t,Xt ) :=
Pt (t,Xt )+ 1

2 P XX(t,Xt )+D(t,Xt )

P (t,Xt )
.

The partial derivatives above can be calculated, albeit tediously. First, Pt (t,Xt )=μP (t,Xt ). For
the other partial derivatives, note that P is a function of parabolic cylinder functions Dν (·). To
differentiate these functions, we make use of the fact that D′

ν (x)=−(x/2)Dν (x)+νDν−1(x)=
(x/2)Dν (x)−Dν+1(x).

For the case of k =0, the partial derivatives above are easier to calculate. After (in both cases
tedious) algebra, it can be shown that

μ(t,Xt )= rf (t,Xt )+σγV ol(t,Xt ).

In particular, this implies that the Sharpe ratio is constant, and equal to σγ , conditional on the
economy using capital intensive production.

The risk premium for the case in which the economy plays the less capital intensive equilibrium
can be derived similarly.

Finally, although we only have one state variable, it is worth mentioning that our model produces
a variety of term structure implications. Specifically, we can numerically show the following: (1)
medium-maturity bonds have yields that are increasing in the state variable. This is “flight-to-
quality” property observed in bonds; (2) term structure is U shaped. Such a structure has been
observed in the United Kingdom (Brown and Schaefer 1994). A downward-sloping term structure
(as we have at low maturities) has been documented by Evans (1998). �

Proof of Proposition 5
There are two cases that we can consider. The first is the case of σγ −√

2δ+2(γ −1)μ≥σ . In this
case, since D/P is positive, it results that V ol(X)≥σ .

The second case is that ofσγ −√
2δ+2(γ −1)μ<σ . In this case, observe thatD/P is decreasing

in X and converges to [2σ +2(γ −1)μ−σ 2(γ −1)2]/2 when X→∞. Therefore, the volatility is
bounded from below by

σγ −√
2δ+2(γ −1)μ+

2

σ (γ −1)+
√

2δ+2(γ −1)μ

2δ+2(γ −1)μ−σ 2(γ −1)2

2
=σ.

Point 2 follows, as dividend yields are decreasing as X increases, while at the same time prices
increase with X. �

Proof of Proposition 6
Since conditional on no disasters the equity premium is equal to σγV ol(Wt ) and from Proposition
5 we have that V ol is affine in dividend yields and nonincreasing in Xt , it results that the equity
premium has the same properties.
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